Fyzika – úloha č. 06

Určení hustoty kapalin pomocí Archimédova zákona

Cíle

Určit hustotu tří různých kapalin pomocí Archimédova zákona a porovnat ji s hustotou určenou pomocí definice hustoty. Tím ověřit platnost Archimédova zákona.

1/3

Zadání úlohy

Změř hustotu tří různých kapalin pomocí Archimédova zákona a porovnej výsledky s výsledky získanými z měření pomocí definice hustoty kapaliny. Diskutuj odchylky mezi výsledky.

Pomůcky

počítač s DataStudiem, USB Link, siloměr Pasco, kádinka, odměrný válec, 3 různé tuby od vitamínů, voda, technický líh, sůl, písek (závaží), váhy

Teoretický úvod

Archimédův zákon popisuje chování těles při ponoření do kapaliny. Říká, že těleso, které je ponořené do kapaliny, je nadlehčováno vztlakovou silou F_{vz} , jejíž velikost se rovná tíze kapaliny o stejném objemu jako je ponořená část tělesa. Její velikost tedy spočítáme ze vztahu

$$F_{\rm vz} = V \cdot \rho_{\rm k} \cdot g \,, \tag{1}$$

kde *g* je hodnota tíhového zrychlení (v našich zeměpisných šířkách přibližně 9,81 $m \cdot s^{-1}$), *V* je objem ponořené časti tělesa a ρ_k je hustota kapaliny.

Je-li těleso ve vzduchu, můžeme velikost vztlakové síly většinou zanedbat, protože je výrazně menší než tíhová síla $F_{\rm G}$. Je-li těleso ponořené v kapalině, je výslednice sil F působící na těleso dána vztahem

$$F = F_{\rm G} - F_{\rm vz}$$
.

Její směr závisí na velikosti tíhové síly $F_{\rm G}$ a vztlakové síly $F_{\rm vz}$. Jestliže tedy zjistíme velikost tíhové síly $F_{\rm G}$, velikost výslednice sil F působící na těleso v kapalině a objem V tělesa ponořeného v kapalině, můžeme ze vztahů (1) a (2) vypočítat hustotu kapaliny $\rho_{\rm k}$ pomocí vztahu

$$\rho_{\rm k} = \frac{F_{\rm G} - F}{V \cdot g} \quad . \tag{3}$$

Hustotu kapaliny z definice hustoty zjistíme změřením hmotnosti kapaliny m_k a příslušného objemu kapaliny V_k a dosazením do vztahu

$$\rho_{\rm k} = \frac{m_{\rm k}}{V_{\rm K}} \,. \tag{4}$$

Autor: Jan Sigl

(2)

Příprava úlohy (praktická příprava)

Připravíme si slaný roztok rozpuštěním co největšího množství soli ve vodě.

Postup práce

Nejprve určíme hustotu kapaliny z definice hustoty. Zvážíme si prázdnou kádinku (nebo jinou nádobu vhodnou k měření objemu kapalin) a zapíšeme si její hmotnost m_n , poté do ní nalijeme měřenou kapalinu, zvážíme kádinku i s kapalinou a zapíšeme si tuto hodnotu hmotnosti m. Dále si zapíšeme objem V_k kapaliny v kádince. Hmotnost kapaliny v kádince zjistíme jako rozdíl hmotnosti *m* a m_n . Tento postup zopakujeme pro všechny tři kapaliny.

Pro určení hustoty kapaliny z Archimédova zákona nejprve změříme průměr d a výšku v všech tří tub od vitamínů. Objem tuby vypočítáme ze vztahu

$$V = \frac{\pi \cdot d^2 \cdot v}{4} \,. \tag{5}$$

Do tuby dáme písek (závaží, kamínky apod.) a tubu zavřeme. Sestavíme aparaturu pro měření (viz obr. 1).

Obr. 1 - Foto uspořádání experimentu Měření hustoty kapalin pomocí Archimédova zákona

Nastavení HW a SW

- 1. Siloměr připojíme k rozhraní USB Link a rozhraní připojíme pomocí USB kabelu k počítači.
- Spustíme program DataStudio a zvolíme možnost Vytvořit experiment. Připojené čidlo by se 2. mělo automaticky detekovat a v okně Data se zobrazí název měřené veličiny (Force, push positive). Z pracovní plochy smažeme předpřipravený graf.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Tyto materiály vznikly v rámci OP Vzdělávání pro konkurenceschopnost č. CZ.1.07/1.3.12/04.0020.

- 3. V menu Setup odznačíme název *Force, push positive,* zatrhneme název *Force, pull positive* a okno zavřeme. Změníme název *Force, pull positive* na *Síla* dvojím poklepáním levým tlačítkem myši na název *Force, pull positive.* V nově otevřeném okně přepíšeme v *Názvu měření* a *Názvu proměnné Force, pull positive* na *Síla.* Dále nastavíme v záložce *Numerický formát* měření na dvě desetinná místa a potvrdíme *Ok.*
- 4. Se stisknutým levým tlačítkem myši přetáhneme název veličiny *Síla* z okna *Data* do okna *Displays,* záložky *Číslice*.

Vlastní měření (záznam dat)

- 1. Spustíme měření tlačítkem *Start* (pokud siloměr neukazuje hodnotu 0,00, vynulujeme ho stiskem tlačítka *ZERO* přímo na siloměru).
- 2. Na siloměr pověsíme tubu od vitamínů a zapíšeme si zobrazenou hodnotu tíhové síly $F_{\rm G}$.
- 3. Poté spustíme tubu do kádinky s měřenou kapalinou a zapíšeme si hodnotu síly *F*. Ukončíme měření stisknutím tlačítka *Konec*.
- 4. Měření opakujeme pro zbylé dvě kapaliny.

Analýza naměřených dat

Vypočítáme hustotu kapaliny ρ_k ze vztahu (3) a porovnáme ji s hustotou kapaliny vypočítanou ze vztahu (5). Diskutujeme rozdíly ve výsledcích a možné chyby měření.

