Řízení předního kola

Cíle

• Upravte StructureBOT tak, aby řídil pomocí předního kola.

Materiály a vybavení

Číslo dílu	Popis	množ ství
ME-7039	StructureBOT, sestavený, s dalšími díly ze stavebnice StructureBOT	1
PS-3232	//control.Node	1
	Měřicí tyč	1
	Páska pro označení podlahy	
	Software pro sběr dat PASCO Capstone™	

Obrázek 1. StructureBOT upravený pro řízení předních kol

Požadované díly

Kromě sestaveného Structure BOT budete potřebovat následující díly ze stavebnice StructureBOT:

číslo refer ence	Popis	mn ožs tví
1	Převodovka 30 zubů	1
2	Převodovka 60 zubů	1
3	Držák motoru	1
4	Drážkový adaptér hřídele	1
5	Servomotor	1
6	Palec	1
7	Šrouby proti zpětnému chodu	2
8	4-40 Šrouby pro upevnění motoru	4

Pozadí

V předchozích činnostech byl StructureBOT řízen chodem krokových motorů na zadních dvou kolech různými rychlostmi. Při této činnosti bude StructureBOT řízen otáčením předního kola se servomotorem spojeným s převody. BOT se posouvá dopředu pomocí pohonu jednoho zadního kola s krokovým motorem.

Postup

Založit

- 1. Sestavte StructureBOT, jak je popsáno v "Sestavení StructureBOT s pohonem 2 kol".
- 2. Nabijte //control.Node.

Část 1: Upravte StructureBOT

- 1. Odpojte oba motory od //control.Node.
- 2. Demontujte obě zadní kola a oba držáky motoru.

3. Sledujte obě upevnění motoru; jeden má hřídel nainstalovaný v otvoru 1, druhý v otvoru 2.

4. Z držáku s hřídelí v otvoru 1 vyjměte motor, ale hřídel ponechte na místě.

5. Nainstalujte tento držák motoru (bez motoru) na levou stranu BOT do otvoru X a zajistěte jej křídlovým šroubem.

6. Pomocí šroubu proti vůli vyměňte kolo na hřídeli.

7. Na pravou stranu BOT nainstalujte druhý držák motoru (s motorem stále připojeným) do otvoru pro kolík Z a zajistěte jej křídlovým šroubem.

8. Připravte si servomotor, drážkový adaptér hřídele, 4-40 šroubů uchycení motoru (4 kusy), uchycení motoru a 30 zubů a šroub proti vůli. Sestavte tyto díly podle obrázku.

9. Demontujte přední pojezdové kolo a odstraňte obě distanční podložky a kleštinu.

4 **PASCO**[®]

10. Připevněte sestavu uchycení motoru k BOT podle obrázku. Budete muset dočasně odstranit paprsek #3.

- 11. Přesuňte //control.Node na zadní stranu platformy na horní části BOT.
- 12. Zapojte servomotor do portu serva 1 //control.Node.
- 13. Zapojte krokový motor do portu B //control.Node.
- 14. Nastavte servomotor na 0°:
 - a. Připojte //control.Node k softwaru PASCO Capstone přes Bluetooth.

POZNÁMKA:Pokyny týkající se softwarových úloh, jako je připojení bezdrátových zařízení a používání Blockly, naleznete v nabídce Nápověda v PASCO Capstone.

b. V novém experimentu vytvořte následující kód:

- c. Spusťte záznam dat. Servomotor se přesune do své polohy 0°.
- 15. Vložte kolečko zpět do přední části BOT. Vyrovnejte kolo tak, aby se točilo přímo vpřed. Připevněte ozubené kolo s 60 zuby k hřídeli pojezdového kola pomocí šroubu proti zpětnému chodu, jak je znázorněno na obrázku.

Část 2: Naprogramujte StructureBOT tak, aby šel přímo vpřed

 V novém experimentu zopakujte následující kód, který nastaví úhel serva na 0° a přikáže krokovému motoru, aby se pohyboval na vzdálenost 100 cm. Průměr kola (cm) může mít pro váš StructureBOT jinou hodnotu. Blok spánku je nutný, aby se servo dostalo na 0°.

set Distance (cm) T to (100) set Wheel Diameter (cm) T to (-		+		•	+	с. Ж		-		•		т 2 •	•	-	
set servo for //control.Node v port	to	ang	le (°)	•	0									2.0				
sleep for 1 ST	• •									*			5405			•		×
set stepper using units rev/s																		
for //control.Node :			् ्र			े. च	1	е С		с 2	े ्र	с 1	1	े क		е 2	с С	
configure port B 🗸			4			5				÷.		2						1
rotate stepper through 🔹				-									(+)			+		
angle (rev)													1					
to max ±speed (rev/s) 🔰	-1.5			147 - S						÷		4	4		- 41			
with acceleration (rev/s²) 🔰	2		•						4	÷			÷			÷		į.
Wait for completion 🖌				÷					÷	e.	2	÷	÷				*	ŝ.

2. Vyzkoušejte kód. Pohybuje se StructureBOT přímo vpřed o 100 cm? Pokud ne, zkontrolujte kód a opravte případné problémy.

Část 3: Zatáčení doleva a doprava

- Servo se může otáčet o ±90°. Jaký je maximální úhel, o který se může přední kolo otočit? Proč je to ne±90°?
- 2. V kódu nastavte úhel serva na +90°. Jakým směrem se otáčí přední kolo (doleva nebo doprava)?
- 3. Napište kód tak, aby se přední kolo otočilo o 30° doprava a poté se pohybovalo v celém kruhu o 360°. Najít vzdálenost, kterou musí kolo krokového motoru urazit, aby kruh dokončilo, bude vyžadovat pokus a omyl. Zaznamenejte tuto vzdálenost.
- 4. Změňte vzdálenost v kódu tak, aby se BOT pohyboval po 180° oblouku doprava. Označte polohu předního kola páskou na podlaze na začátku a na konci oblouku. Pomocí metru změřte průměr tohoto kruhu, který tvoří přední kolo.
- 5. Napište kód tak, aby se přední kolo otočilo o 30° doleva a poté se pohybovalo v úplném kruhu. Najít vzdálenost, kterou musí kolo krokového motoru urazit, aby kruh dokončilo, bude vyžadovat pokus a omyl. Zaznamenejte tuto vzdálenost. Úhel bude jiný, než byl pro pravou zatáčku, protože krokový motor je nyní spíše na vnější straně kruhu než uvnitř.
- 6. Změňte vzdálenost v kódu tak, aby se BOT pohyboval po 180° oblouku doleva. Označte polohu předního kola páskou na podlaze na začátku a na konci oblouku. Použijte metr změřte průměr tohoto kruhu, který tvoří přední kolo. Je průměr kruhu stejný jako u pravé zatáčky? Proč nebo proč ne?
- 7. Změňte svůj kód tak, aby se přední kolo otočilo o 30° doprava a BOT se pohyboval o 90 stupňů.
- 8. Naprogramujte BOT tak, aby se posunul vpřed o 50 cm, zastavil se, otočil se doprava o 90 stupňů a postoupil vpřed o 30 cm.