Otočte StructureBOT

Cíle

• Naučte se, jak přimět StructureBOT, aby se otočil doleva a doprava o 90° a otočil se kolem středu BOTu.

Materiály a vybavení

Číslo dílu	Popis	mn ožs tví
ME-7039	StructureBOT, sestaveno	1
PS-3232	//control.Node	1
	Software pro sbĕr dat PASCO Capstone [™]	

Obrázek 1. StructureBOT sestavený s //control.Node

Postup

Založit

- 1. Sestavte StructureBOT, jak je popsáno v "Sestavení StructureBOT s pohonem 2 kol".
- 2. Nabijte //control.Node.
- 3. Ujistěte se, že je krokový motor na levé straně BOT zapojen do portu A //control.Node a že krokový motor na pravé straně BOT je zapojen do portu B.
- 4. Připojte //control.Node k softwaru PASCO Capstone přes Bluetooth.

POZNÁMKA:Pokyny týkající se softwarových úloh, jako je připojení bezdrátových zařízení a používání Blockly, naleznete v nabídce Nápověda v PASCO Capstone.

5. Vytvořte graf úhlu, Port A versus čas. Poté přidejte plochu plotu a vykreslete úhel, Port B versus čas.

Část 1: Zatáčka vlevo

1. V pracovním prostoru Blockly Code začněte tímto blokem:

.

Zpočátku tento kód nedělá nic, protože hodnoty max ±rychlosti (ot./s) jsou 0.

2. Pro každý krokový motor zadejte experimentální kladné a záporné hodnoty pro maximální ±rychlost (otáčky/s). Prozkoumejte znaménko potřebné pro každý krokový motor, aby se BOT

POZNÁMKA: Možné hodnoty se pohybují od -2 ot/s do +2 ot/s.

otáčel (točil kolem své svislé osy).

- 3. Při úhlu 1 otáčky pro oba steppery, pod jakým úhlem (přibližně) se BOT otáčí?
- 4. O jaký úhel se musí otočit kola, aby se BOT otočil o 90°?

s= délka oblouku, W = vzdálenost mezi hnacími koly, D = průměr kola, N = počet otáček kola (nebo hřídele motoru)

délka oblouku = (poloměr) (úhel v radiánech)

$$s = (W/2)(\pi/2) = \frac{W\pi}{4}$$
(1)

Délka oblouku může být také vyjádřena jako vzdálenost, kterou kolo urazí.

délka oblouku = (obvod kola) (počet otáček)

$$s = \pi D N \tag{2}$$

Nastavte rovnici (1) rovnou rovnici (2).

$$\pi DN = \frac{W\pi}{4}$$

Vyřešte počet otáček kola.

$$N = \frac{W}{4D} \tag{3}$$

- 5. Abychom mohli odbočit doleva, musíme nejprve BOT zastavit (v případě, že se BOT již pohybuje). Vytvořte funkci s názvem turnLeft. Vytvořte následující proměnné:
 - Průměr kola (cm)

• Šířka stopy (cm)

- v (ot./s)
- podepsat

Uvnitř funkce nastavte tyto proměnné na hodnoty uvedené níže. Zahrňte krokový blok, který zastaví oba krokové motory.

0	to turnLeft																				
	set sign to 6.38				2	Č.	*	1	2		*		+		1	1	*		<u>*</u>	1	1
	set Track Width (cm) to 17	.57		*		+	*		*	*	*		+	*				*	*	+	
	set v (rev/s) to 1.5					*		*								*					
	set sign to -1								*				*								
	set stepper using units rev/s									*			*)			*		.*.		*	
	out stopper doing and tower	1.4.1	. * .	19	18				<u>*</u> 1	1		. *		. *	14			+	*	<u>*</u>):	19
	for //control.Node :		10	1						- (* 2			*		2	2				÷0	32
	configure port A 🗸	1.00		्र		÷.	+			\mathbf{t}	+		+	÷.			+	π		÷.:	
	stop -	- (a)	÷		÷.		+	÷	ŝ	+	+		*		÷				+	÷	d.
	with acceleration (rev/s²) 🔋	1.5		e.	2	*		ŝ	ŝ	÷			•	2	3	÷	÷	÷		•	÷.
	configure port B V			ł	+		÷	÷	÷	*	+	٠	+		ł		+	÷	÷	÷	
	stop *		+	9	2	+	*	÷	÷	÷	+		÷	+	2		+	÷	÷	÷,	-
	with acceleration (rev/s²)	1.5	ŀ	3		×.			÷	-			+	14	2	ų,	×.	÷		÷	÷.,
	Wait for completion 🖌	1.4.1		24				•	1			1	*		14			*	1	•	24

Otočte StructureBOT

6. Přidejte další krokový blok k funkci, díky které se BOT otočí doleva o 90°.

set stepper using units rev/s		(\mathbf{r})	*	8	÷	ž	*	+	*	ŝ	+	3	+	*	+	ŝ	÷	÷	÷	
for //control.Node 🔹 :	.*.	*		÷		×		٠		÷			*	*	*	×.		5	1	*
configure port A ✔		+	+	*	*		*		+	*		*	*	*		÷	*	*	÷	+
rotate stepper through	:*5	100		2	*	1		1	5.41	5		3	1		346				1	10
angle (rev) 🖡	4	Trac	k W	idth	(cm) •	÷	v	4	4	×	•	V	Vhe	el Di	ame	eter	(cm) •	
to max ±speed (rev/s) 🖡	4	sign	•	×	2) (V (rev/	's) •	2		Ì	ì				-			* •	•
with acceleration (rev/s²)	1.5				2	4						2							1	
configure port B 🗸									1.11											
rotate stepper through	+							+	+											+
angle (rev) 🖡	4	Trac	k W	idth	(cm) •	ŀ	y.		4	×	•	M	Vhe	el Di	ame	eter	(cm) 🔻	
to max ±speed (rev/s) 🖡		sign	v	×		V (rev/	s)	2	÷	*	ł	1	۲	1	8	*	÷	(#1) (
with acceleration (rev/s²)	1.5		.+	+	+	+	(+).	4	.+)		+	÷	it.	*	: A	+	+		÷.	+
Wait for completion 🗸	•		•				•	•	•	*	Ì		•	•		•			•	•

Část 2: Kalibrace šířky stopy

Aby se BOT otočil přesně o 90°, musí být přesně změřena šířka stopy. Jedním ze způsobů, jak přesně určit šířku stopy, je provést osm zatáček o 90 stupňů a zjistit, zda se BOT po provedení těchto dvou úplných kruhů vrátí do výchozího bodu.

- 1. Zarovnejte BOT s čárou na podlaze.
- 2. V kódu použijte funkci turnLeft osmkrát za sebou. Končí BOT na lince? Pokud ne, změňte hodnotu šířky stopy v kódu a otestujte ji znovu.

Část 3: Odbočte doprava

- 1. Vytvořte funkci s názvem turnRight. Jaká je jediná změna, kterou musíte udělat, když odbočíte doleva kód, aby BOT odbočil doprava?
- 2. Použijte své funkce, které se několikrát opakují, aby se robot otočil doprava nebo doleva.

Část 4: Uložte funkci

- 1. Vytvořte blok Notes s vysvětlením, že tato funkce způsobí, že se BOT otočí o 90° doleva nebo doprava.
- 2. Do tohoto bloku Notes vložte funkce turnLeft a turnRight.
- 3. Klepněte pravým tlačítkem myši na funkce a sbalte je.

4. Uložte funkci jako Turn-Left-Right.pcbx.