

Úvod

Deníky a snímky

- Tlačítko Snímek se používá k zachycení obrazovky SPARK Science Learning System.
- Deník je místo kde se ukládají snímky a prohlížejí v SPARK Science Learning System.

Tlačítko sdílení se používá k přenosu nebo tisku Vašeho deníku pro Vaši práci.

Tento obrázek je připomínka k zmáčknutí **o** pro pořízení snímku stránky, poté co jste vložili svou odpověď.

Poznámka: Pokud chcete, můžete použít snímek první stránky této laboratorní práce jako úvodní stránku pro Váš deník.

Laboratorní úkoly

Hmota kolem nás se neustále mění. Některé změny vytvářejí nové látky, zatímco jiné pouze mění jejich vzhled. Tvorba a rozpoznání nových produktů záleží na tom být schopný určit, zdali došlo k chemické reakci. Na konci této práce budete schopni:

- Rozlišit mezi fyzikálními změnami a chemickými reakcemi za použití důkazu, který nasvědčuje tomu, že došlo k nové chemické reakci.
- Rozpoznat reaktanty a produkty v chemické reakci.
- Rozlišit mezi exotermními a endotermními chemickými reakcemi.

Pozadí

- Chemie je studie hmoty a jejích změn. Hmota, která je tvořená atomy, se může měnit fyzikálně i chemicky.
- Fyzikální změna nastává, když se fyzický vzhled látky mění, ale chemická identita látky zůstává stejná.

... Pozadí

 Chemická změna, taktéž nazývaná jako chemická reakce nastává, když se vytvoří nová chemická látka.

Spalování (hoření)

Reaktanty **Produkty** $C_{12}H_{22}O_{11} + 12O_2 \rightarrow 12CO_2 + 11H_2O + Energie$ (12)(11)(12)sacharóza + kyslík \rightarrow oxid uhličitý + voda

• Atomy, které tvoří reaktanty, se přeskupí, aby vytvořily nové molekuly (produkty).

Kontrola

- 1. Jak zní jiný název pro chemickou změnu?
 - a) fyzikální změna
 - b) chemická reakce
 - c) fázová změna
 - d) volná změna
 - e) oxidační reakce

Tento obrázek je připomínka k zmáčknutí o pro pořízení snímku stránky, poté co jste vložili svou odpověď.

... Pozadí

- Existují čtyři základní typy důkazů, které naznačují chemickou reakci.
- Jsou to:
- 1. Vznik plynu
- 2. Značná změna barvy
- 3. Změna teploty
- 4. Vznik sraženiny

(pevná látka vytvořena reakcí dvou vodných roztoků)

 Tyto typy důkazů nasvědčují tomu, že došlo k chemické změně nebo k přeskupení molekul.

Kontrola

- 2. Co NENÍ považováno za důkaz chemické změny?
 - a) Vznik sraženiny
 - b) Změna teploty
 - c) Vznik plynu
 - d) Změna ve fázi
 - e) Značná změna barvy

... Pozadí

• Chemické reakce, které uvolňují teplo do okolí, se nazývají exotermické reakce.

• Chemické reakce, které pohlcují teplo z okolí, se nazývají endotermické reakce.

Příklad Chladícího balíčku Teplota se během reakce snižuje.

Bezpečnost

- Použijte všechny základní laboratok bezpečnostní postupy.
- Roztok dusičnanu stříbrného (AgNO₃) v tomto pokusu může dočasně zbarvit vaši pokožku po vystavení přímému světlu. Pokud se roztok dostane na vaši pokožku, okamžitě ji omyjte mýdlem a vodou.
- Mnohé z chemikálií v tomto pokuse jsou nebezpečné životnímu prostředí a neměly by se vylévat do odpadu. Při odstraňování chemikálií se řiďte pokyny vašeho učitele.
- Buďte opatrní s horkou vodou a horkým laboratorním vybavením!

Materiály a vybavení

Připravte si všechny tyto materiály před začátkem práce.

- Teplotní čidlo
- Plotýnka
- Odměrný válec, 100-mL
- Odměrný válec, 10-mL
- Kádinky (2), 250-mL
- Zkumavky (7), 15-mm x100-mm
- Stojan na zkumavky
- Promývací baňka naplněná destilovanou (nevodivou) vodou
- Kádinka na odpadní splaškovou vodu

- Špachtle
- Míchací tyčinka
- Váhy
- Odvažovací papír

...Materiály a vybavení

Také si připravte tyto materiály před začátkem práce.

- Bílí ocet, 2 mL
- Uhličitan vápenatý, 0.2 g
- 1.0 M roztoku kyseliny citrónové, 2 mL
- 1.0 M roztoku bikarbonátu sodného, 2 mL
- 0.5 M roztoku modré skalice, 2 mL
- 1.0 M roztoku hydroxidu sodného, 2 mL
- 0.05 M roztoku dusičnanu stříbrného, 2 mL
- 0.1 M roztoku chloridu sodného, 2 mL
- Kyselina laurová, 0.5 g
- Barevný nápojový prášek, 0.2 g

- Šumivá tableta
- Voda, 250 mL

Pořadí úloh

A. Klasifikujte
 neznámé změny jako
 chemické reakce
 nebo fyzikální změny
 na základě svých
 pozorování.

B. Proveďte tři chemické reakce a tři fyzikální změny a zadejte důkaz o každém typu změny, která nastala. Kroky nalevo jsou součástí této laboratorní práce. Nejsou ve správném pořadí. Určete správné pořadí těchto kroků, poté pořiďte snímek této stránky.

C. Proveďte čtyři neznámé změny a zaznamenejte svá pozorování. **D.** Nalijte 150 mL vody do 250- mL kádinky a přiveďte ji do stavu varu pro pozdější použití v práci.

Situace: Chemické reakce

- 1. Připojte teplotní čidlo k SPARK Science Learning System.
- 2. Naplňte 250-mL kádinku přibližně 150 mL vody. Umístěte kádinku na vařič a nechte vodu uvařit. Vařící vodu použijete v následujících dvou sekcích.
- 3. Označte čistou zkumavku "Reakce #1, " druhou čistou zkumavku "Reakce #2," a třetí čistou zkumavku "Reakce #3."
- 4. Přidejte 2 mL octu (kyselina octová) do zkumavky s označením "Reakce #1."
- 5. Vložte teplotní čidlo do octu.
- 6. Odměřte 0.2 g uhličitanu vápenatého (prášek) odvažovacím papíře.

O1: Zadejte alespoň dvě vlastnosti octu do datové tabulky.*
O2: Zadejte alespoň dvě vlastnosti uhličitanu vápenatého do datové tabulky.*

*Pro vložení dat do tabulky:

- Zmáčkněte pro otevření palety Nástrojů.
 Zmážku žto b potá kliku žto
- 2. Zmáčkněte **N** poté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté.
- 3. Zmáčkněte 🔟 k otevření obrazovky Klávesnice.

Shromažďování dat: 1. Zmáčkněte **pro** start shromažďování dat. 2. Přidejte 0.2 g uhličitanu vápenatého do octu a promíchejte je ve zkumavce. 3. Zmáčkněte 💹 pak 🔀 ke změně velikosti grafu, tak aby jste mohli jasně vidět probíhající změny v teplotě. 4. Jakmile se teplota stabilizuje zmáčkněte 🔼 k zastavení sběru dat.

O3: Popište nový(é) produkt(y) vytvořené reakcí octu a uhličitanu vápenatého.

O4: Je reakce mezi octem a uličitanem vápenatým exotermická nebo endotermická? Jak jste to zjistili? **O5:** Jaký důkaz chemické reakce byl pozorován, když ocet zreagoval s uhličitanem vápenatým?

Sběr dat: Chemické reakce

- 5. Vyjměte teplotní čidlo ze zkumavky "Reakce #1". Nechte si zkumavku na boku pro možné pozdější znovu použití chemikálií v experimentu.
- 6. Pořádně očistěte teplotní čidlo, opětovným politím destilovanou vodou.
- 7. Přidejte 2 mL kyseliny citrónové do zkumavky "Reakce #2."
- 8. Vložte teplotní čidlo do kyseliny citrónové.
- 9. Odměřte 2 mL z 1.0 M roztoku bikarbonátu sodného a nechte jej v odměrném válci.

 O6: Zadejte alespoň dvě vlastnosti kyseliny citrónové do datové tabulky.*
 O7: Zadejte alespoň dvě vlastnosti bikarbonátu sodného do datové tabulky.*

*Pro vložení dat do tabulky:

- 1. Zmáčkněte pro otevření palety Nástrojů.
- 2. Zmáčkněte poté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté.
- 3. Zmáčkněte 🛄 k otevření obrazovky Klávesnice.

Sběr Dat 10. Zmáčkněte 🚬 pro start shromažďování dat. 11. Přidejte 2 mL bikarbonátu sodného do kyseliny citrónové a promíchejte je ve zkumavce. 12. Zmáčkněte 🔣 pak 🔀 ke změně velikosti grafu, tak aby jste mohli jasně vidět probíhající změny v teplotě. 13. Jakmile se teplota stabilizuje zmáčkněte 🔼 k zastavení sběru dat.

O8: Popište nový(é) produkt(y) vytvořené reakcí kyseliny citrónové a bikarbonátu sodného. **O9:** Je reakce mezi kyselinou citrónovou a bikarbonátem sodným exotermická nebo endotermická? Jak jste to zjistili?

O10: Jaký důkaz chemické reakce byl pozorován, když kyselina citrónová zreagovala s bikarbonátem sodným?

Sběr dat: Chemické reakce

- 14. Vyjměte teplotní čidlo ze zkumavky "Reakce #2". Nechte si zkumavku na boku pro možné pozdější znovu použití chemikálií v experimentu.
- 15. Pořádně očistěte teplotní čidlo, opětovným politím destilovanou vodou.
- 16. Přidejte 2 mL sulfátu měďnatého do zkumavky "Reakce #3."
- 17. Vložte teplotní čidlo do sulfátu měďnatého.
- 18. Odměřte 2 mL z 1.0 M roztoku hydroxidu sodného a nechte jej v odměrném válci.

O11: Zadejte alespoň dvě vlastnosti sulfátu měďnatého do datové tabulky.* 012: Zadejte alespoň dvě vlastnosti hydroxidu sodného do datové tabulky.*

* Pro vložení dat do tabulky: 1. Zmáčkněte pro otevření palety Nástrojů. 2. Zmáčkněte 📐 poté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté. 3. Zmáčkněte 🔢 k otevření obrazovky Klávesnice.

- 19. Zmáčkněte 🔁 pro start shromažďování dat. 20. Přidejte 2 mL hydroxidu sodného do sulfátu měďnatého a promíchejte je ve zkumavce. 21. Zmáčkněte 💹 pak 🔀 ke změně velikosti grafu, tak aby jste mohli jasně vidět probíhající změny v teplotě.
- 22. Jakmile se teplota stabilizuje zmáčkněte k
 - zastavení sběru dat.

O13: Popište nový(é) produkt(y) vytvořené reakcí sulfátu měďnatého a hydroxidu sodného. O14 Je reakce mezi sulfátem měďnatým a hydroxidem sodným exotermická nebo endotermická? Jak jste to zjistili? O15: Jaký důkaz chemické reakce byl pozorován, když sulfát měďnatý zreagoval s hydroxidem sodným??

O16: Bezbarvé plyny není možné "vidět". Jak je možné zjistit, zda se plyn vyvíjí (vytváří) ve vodném roztoku? **O17:** Co je "reaktantem" v chemické reakci?

O18: Co je "produktem" v chemické reakci?

Situace: Fyzikální změny

- 1. Vyjměte teplotní čidlo ze zkumavky"Reakce #3.
- 2. Nechte si zkumavku na boku pro možné pozdější znovu použití chemikálií v experimentu.
- 3. Pořádně očistěte teplotní čidlo, opětovným politím destilovanou vodou.
- Pozorujte vodu, kterou jste začali ohřívat na začátku práce. Udržujte vodu v mírném varu, protože ji budete potřebovat k zahřátí chemické látky v poslední části této práce. Možná budete potřebovat nahradit vodu, která se vypařila.

Sběr Dat:

 Pozorujte jak se voda zahřívá a zadejte svá pozorování vody před a po vaření do datové tabulky.*

*Pro vložení dat do tabulky:

- 1. Zmáčkněte pro otevření palety Nástrojů.
- Zmáčkněte spoté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté.
- 3. Zmáčkněte **1** k otevření obrazovky Klávesnice

2. Přidejte 0.2 g of a colored drink to a test tube labeled "Fyzikální změna#2."

- 3. Přidejte 5 mL do zkumavky.
- Zadejte svá pozorování do datové tabulky.*

*Pro vložení dat do tabulky:

- 1. Zmáčkněte pro otevření palety Nástrojů.
- 2. Zmáčkněte N poté klikněte na buňku v datové tabulce k
 - jejímu zvýraznění ve žluté.
- 3. Zmáčkněte 🛄 k otevření obrazovky Klávesnice

5. Rozlomte šumivou tabletu na 3-4 kousky.
6. Zadejte svá pozorování tablety před a po lámání do datové tabulky.*

Poznámka: Schovejte si kousky tablety. Použijete je později v práci.

*Pro vložení dat do tabulky:
 1. Zmáčkněte pro otevření palety Nástrojů.

2. Zmáčkněte **N** poté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté.

3. Zmáčkněte 🛄 k otevření obrazovky Klávesnice

Sběr Dat: Fyzikální změny

O19: Jak se fyzikální změny a chemické reakce od sebe navzájem liší ?

Situace: Neznámé Změny

Tuto laboratorní práci zakončíte provedením čtyř neznámých změn a určením, zda jde o fyzikální změny nebo chemické reakce. Aby jste mohli provést tyto změny:

- Změna#1: Nalijte 100 mL of vody z vodovodu do čisté 250-mL kádinky. Pak přidáte kousky šumivé tablety (ale ještě ne!!).
- Změna#2: Nalijte 2 mL z 0.05 M roztoku dusičnanu stříbrného do zkumavky označené "neznámý #2." Odměřte 2 mL z 0.1 M chloridu sodného a dejte ho do odměrného válce.
- *3. Změna #3*: Zahřejete ve vařící vodě sraženinu hydroxidu měďnatého, která vznikal ve zkumavce "reakce #3".
- *Změna #4*:Odměřte 0.5 g kyseliny laurové a umístěte ji do zkumavky, neznámý #4."
 Použíte vařící vodu k zahřání kyseliny laurové.

O20: Zadejte alespoň dvě vlastnosti každého reaktantu ze čtyř neznámých změn, které budou provedeny.*

Poznámka: *"*teplo" reaktantu nemusí být popsáno.

*Pro vložení dat do tabulky:
1. Zmáčkněte pro otevření palety Nástrojů.
2. Zmáčkněte s poté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté.
3. Zmáčkněte s k otevření obrazovky Klávesnice.

Sběr Dat:

- 1. Umístěte teplotní čidlo do 100 mL vody.
- Zmáčkněte > pro start shromažďování dat.
- 3. Přidejte úlomky šumivé tablety do kádinky a zamíchejte ji.
- 4. Zmáčkněte Z pak z ke změně velikosti grafu.
- Jakmile se teplota stabilizuje zmáčkněte k zastavení sběru dat.

O21: Zadejte alespoň dvě pozorování, když se kusy tablety smísily s vodou.*
O22: Byla vytvořena nová chemická látka(ano nebo ne)?*

*Pro vložení dat do tabulky:

- 1. Zmáčkněte pro otevření palety Nástrojů.
- 2. Zmáčkněte N poté klikněte na buňku v datové tabulce k
 - jejímu zvýraznění ve žluté.
- 3. Zmáčkněte 🔟 k otevření obrazovky Klávesnice.

6. Očistěte teplotní čidlo a umístěte ho do 2 mL roztoku dusičnanu stříbrného ve zkumavce "neznámý #2. 7. Zmáčkněte 🚬 pro start shromažďování dat. 8. Nalijte 2 mL roztoku chloridu sodného do chloridu sodného (ve zkumavce "neznámý #2"). 9. Zmáčkněte 🔣 pak 📷 ke změně velikosti grafu. 10.Jakmile se teplota stabilizuje zmáčkněte 🔼 k zastavení sběru dat.

O23: Enter at least two observations when the silver nitrate and sodium chloride were mixed.*
O24: Vznikla nová chemická látka(ano nebo ne)?*

*Pro vložení dat do tabulky:

- 1. Zmáčkněte pro otevření palety Nástrojů.
- 2. Zmáčkněte **N** poté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté.
- 3. Zmáčkněte 🔟 k otevření obrazovky Klávesnice.

Sběr Dat: Neznámé Změny

- Za pomoci držáku na zkumavky, umístěte zkumavku "chemická reakce #3" (která obsahuje sraženinu hydroxidu měďnatého) do vroucí vody.
- 2. Pomocí druhého držáku na zkumavky , umístěte zkumavku "neznámý #4 (obsahující kyselinu laurovou) do vroucí vody.
- Nechte obě zkumavky ve vroucí vodě, dokud kompletně neproběhnou změny (asi 3-5 minut).
- Poté co dojde k změnám, vyjměte zkumavky z vroucí vody za použití držáku na zkumavky a nechte je vychladnout ve stojanu na zkumavky.

Varování: ujistěte se, že zkumavky nemíří na lidi!

5. Vypněte vařič a nechte ho vychladnout, než jej uklidíte!

O25: Zaznamenejte alespoň dvě pozorování, která jste učinili během zahřívání každé látky. *
O26: Vznikla v obou případech nová látka(ano nebo ne)? *

*Pro vložení dat do tabulky:
1. Zmáčkněte pro otevření palety Nástrojů.
2. Zmáčkněte poté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté.
3. Zmáčkněte k otevření obrazovky Klávesnice.

Analýza

 Identifikujte každou neznámou změnu jako fyzikální změnu nebo chemickou reakci a uveďte důkazy, které jste použili při rozhodování.

*Pro vložení dat do tabulky:
1. Zmáčkněte pro otevření palety Nástrojů.
2. Zmáčkněte poté klikněte na buňku v datové tabulce k jejímu zvýraznění ve žluté.
3. Zmáčkněte k otevření obrazovky Klávesnice.

Analýza

2. Byly neznámé změny #1 a #2 exotermické nebo endotermické?

Run 4: unknown #1 Run 5: unknown #2

Analýza

3. Byly neznámé změny#3 a #4 exotermické nebo endotermické? Vysvětlete proč.

Analýza

4. Jaký je rozdíl mezi fyzikální změnou a chemickou reakcí?

Analýza

5. Jaké jsou čtyři hlavní důkazy, vypovídající o chemické reakci?

Syntéza

 Pokud se sůl smíchá s vodou, je to příklad fyzikální změny nebo chemické reakce? Vysvětlete proč.

Syntéza

2. Vyjmenujte dva příklady, kdy se mění teplota, ale nevzniká nová látka.

Syntéza

3. Když hřebík zreziví, je to příklad fyzikální změny nebo chemické reakce? Vysvětlete proč.

Syntéza

 Když roste tráva, je to příklad fyzikální změny nebo chemické reakce? Vysvětlete proč.

Syntéza

 Když otevřete plechovku sodovky, je to příklad fyzikální změny nebo chemické reakce? Vysvětlete proč.

- Ve všech chemických reakcích, ______ se mění na ______.
 - a) produkty; reaktanty
 - b) molekuly; atomy
 - c) reaktanty; produkty
 - d) atomy; prvky

- 2. Spalování dřeva, které tvoří saze je příkladem _____ změny.
 - a) Fyzikální
 - b) Pomalé
 - c) Rychlé
 - d) Chemické

- Která z následujících možností nasvědčuje tomu, že došlo k chemické reakci?
 - a) Změna je velmi rychlá.
 - b) Vzniká sraženina.
 - c) Můj spolupracovník to říká.
 - d) Stav hmoty se mění.
 - e) Temně oranžový roztok se mění v lehce oranžový roztok..

- Chemická reakce pohlcující energii se nazývá a(n) _____ reakce.
 - a) endotermická
 - b) exotermická
 - c) vyrovnaná
 - d) úplná

- 5. Broušení velkého krystalu cukrkandlu na malé kousky je příkladem_____.
 - a) Fyzikální změny
 - b) seriously tedious chore
 - c) Chemická změny
 - d) exotermická změny
 - e) endotermická změny

Blahopřejeme!

Úspěšně jste dokončili laboratorní práci.

Prosím nezapomeňte se řídit pokyny svého učitele ohledně uklízení a poslání vaši práceand.

Odkazy

1.TEST TUBE & LADY http://commons.wikimedia.org/wiki/File:Test_tube_(PSF).svg
 2.SUCROSE http://commons.wikimedia.org/wiki/File:Sucrose-3D-balls.png
 3.BURNING MATCH http://freeclipartnow.com/construction/tools/lit-match.jpg.html
 4.WATER MOLECULE http://commons.wikimedia.org/wiki/File:Water_molecule.svg
 5.CUP WITH GAS http://www.freeclipartnow.com/food/beverages/soda/soft-drink-icon.jpg.html
 6.THERMOMETER http://www.freeclipartnow.com/small-icons/miscellaneous/thermometer-1.jpg.html
 7.NITRATE STAIN http://commons.wikimedia.org/wiki/File:Silver_nitrate_stains.jpg
 8.HOT WARNING http://commons.wikimedia.org/wiki/File:DIN_4844-2_Warnung_vor_heisser_Oberflaeche_D-W026.svg

9.VINEGAR http://freeclipartnow.com/household/chores/cleaners/vinegar.jpg.html 10.BEAKER http://freeclipartnow.com/science/flasks-tubes/beaker.jpg.html

11.NAIL http://commons.wikimedia.org/wiki/File:Nail.JPG

12.SODA CAN http://www.freeclipartnow.com/food/beverages/soda/pop-can.jpg.html

13.BURNING WOOD http://commons.wikimedia.org/wiki/File:NaturalFireplace.jpg